Winter Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dumps65

Databricks Databricks-Generative-AI-Engineer-Associate Dumps

Databricks Certified Generative AI Engineer Associate Questions and Answers

Question 1

A Generative AI Engineer has created a RAG application which can help employees retrieve answers from an internal knowledge base, such as Confluence pages or Google Drive. The prototype application is now working with some positive feedback from internal company testers. Now the Generative Al Engineer wants to formally evaluate the system’s performance and understand where to focus their efforts to further improve the system.

How should the Generative AI Engineer evaluate the system?

Options:

A.

Use cosine similarity score to comprehensively evaluate the quality of the final generated answers.

B.

Curate a dataset that can test the retrieval and generation components of the system separately. Use MLflow’s built in evaluation metrics to perform the evaluation on the retrieval and generation components.

C.

Benchmark multiple LLMs with the same data and pick the best LLM for the job.

D.

Use an LLM-as-a-judge to evaluate the quality of the final answers generated.

Question 2

A Generative AI Engineer is testing a simple prompt template in LangChain using the code below, but is getting an error.

as

Assuming the API key was properly defined, what change does the Generative AI Engineer need to make to fix their chain?

A)

as

B)

as

C)

as

D)

as

Options:

A.

Option A

B.

Option B

C.

Option C

D.

Option D

Question 3

A Generative Al Engineer is building a RAG application that answers questions about internal documents for the company SnoPen AI.

The source documents may contain a significant amount of irrelevant content, such as advertisements, sports news, or entertainment news, or content about other companies.

Which approach is advisable when building a RAG application to achieve this goal of filtering irrelevant information?

Options:

A.

Keep all articles because the RAG application needs to understand non-company content to avoid answering questions about them.

B.

Include in the system prompt that any information it sees will be about SnoPenAI, even if no data filtering is performed.

C.

Include in the system prompt that the application is not supposed to answer any questions unrelated to SnoPen Al.

D.

Consolidate all SnoPen AI related documents into a single chunk in the vector database.

Question 4

A Generative AI Engineer has been asked to design an LLM-based application that accomplishes the following business objective: answer employee HR questions using HR PDF documentation.

Which set of high level tasks should the Generative AI Engineer's system perform?

Options:

A.

Calculate averaged embeddings for each HR document, compare embeddings to user query to find the best document. Pass the best document with the user query into an LLM with a large context window to generate a response to the employee.

B.

Use an LLM to summarize HR documentation. Provide summaries of documentation and user query into an LLM with a large context window to generate a response to the user.

C.

Create an interaction matrix of historical employee questions and HR documentation. Use ALS to factorize the matrix and create embeddings. Calculate the embeddings of new queries and use them to find the best HR documentation. Use an LLM to generate a response to the employee question based upon the documentation retrieved.

D.

Split HR documentation into chunks and embed into a vector store. Use the employee question to retrieve best matched chunks of documentation, and use the LLM to generate a response to the employee based upon the documentation retrieved.

Question 5

A Generative AI Engineer is developing a chatbot designed to assist users with insurance-related queries. The chatbot is built on a large language model (LLM) and is conversational. However, to maintain the chatbot’s focus and to comply with company policy, it must not provide responses to questions about politics. Instead, when presented with political inquiries, the chatbot should respond with a standard message:

“Sorry, I cannot answer that. I am a chatbot that can only answer questions around insurance.”

Which framework type should be implemented to solve this?

Options:

A.

Safety Guardrail

B.

Security Guardrail

C.

Contextual Guardrail

D.

Compliance Guardrail

Question 6

A Generative Al Engineer would like an LLM to generate formatted JSON from emails. This will require parsing and extracting the following information: order ID, date, and sender email. Here’s a sample email:

as

They will need to write a prompt that will extract the relevant information in JSON format with the highest level of output accuracy.

Which prompt will do that?

Options:

A.

You will receive customer emails and need to extract date, sender email, and order ID. You should return the date, sender email, and order ID information in JSON format.

B.

You will receive customer emails and need to extract date, sender email, and order ID. Return the extracted information in JSON format.

Here’s an example: {“date”: “April 16, 2024”, “sender_email”: “sarah.lee925@gmail.com”, “order_id”: “RE987D”}

C.

You will receive customer emails and need to extract date, sender email, and order ID. Return the extracted information in a human-readable format.

D.

You will receive customer emails and need to extract date, sender email, and order ID. Return the extracted information in JSON format.

Question 7

A Generative AI Engineer is designing a chatbot for a gaming company that aims to engage users on its platform while its users play online video games.

Which metric would help them increase user engagement and retention for their platform?

Options:

A.

Randomness

B.

Diversity of responses

C.

Lack of relevance

D.

Repetition of responses

Question 8

A Generative Al Engineer has already trained an LLM on Databricks and it is now ready to be deployed.

Which of the following steps correctly outlines the easiest process for deploying a model on Databricks?

Options:

A.

Log the model as a pickle object, upload the object to Unity Catalog Volume, register it to Unity Catalog using MLflow, and start a serving endpoint

B.

Log the model using MLflow during training, directly register the model to Unity Catalog using the MLflow API, and start a serving endpoint

C.

Save the model along with its dependencies in a local directory, build the Docker image, and run the Docker container

D.

Wrap the LLM’s prediction function into a Flask application and serve using Gunicorn

Question 9

A Generative Al Engineer is tasked with developing an application that is based on an open source large language model (LLM). They need a foundation LLM with a large context window.

Which model fits this need?

Options:

A.

DistilBERT

B.

MPT-30B

C.

Llama2-70B

D.

DBRX

Question 10

When developing an LLM application, it’s crucial to ensure that the data used for training the model complies with licensing requirements to avoid legal risks.

Which action is NOT appropriate to avoid legal risks?

Options:

A.

Reach out to the data curators directly before you have started using the trained model to let them know.

B.

Use any available data you personally created which is completely original and you can decide what license to use.

C.

Only use data explicitly labeled with an open license and ensure the license terms are followed.

D.

Reach out to the data curators directly after you have started using the trained model to let them know.

Question 11

What is an effective method to preprocess prompts using custom code before sending them to an LLM?

Options:

A.

Directly modify the LLM’s internal architecture to include preprocessing steps

B.

It is better not to introduce custom code to preprocess prompts as the LLM has not been trained with examples of the preprocessed prompts

C.

Rather than preprocessing prompts, it’s more effective to postprocess the LLM outputs to align the outputs to desired outcomes

D.

Write a MLflow PyFunc model that has a separate function to process the prompts

Question 12

A Generative Al Engineer has developed an LLM application to answer questions about internal company policies. The Generative AI Engineer must ensure that the application doesn’t hallucinate or leak confidential data.

Which approach should NOT be used to mitigate hallucination or confidential data leakage?

Options:

A.

Add guardrails to filter outputs from the LLM before it is shown to the user

B.

Fine-tune the model on your data, hoping it will learn what is appropriate and not

C.

Limit the data available based on the user’s access level

D.

Use a strong system prompt to ensure the model aligns with your needs.

Question 13

A Generative AI Engineer developed an LLM application using the provisioned throughput Foundation Model API. Now that the application is ready to be deployed, they realize their volume of requests are not sufficiently high enough to create their own provisioned throughput endpoint. They want to choose a strategy that ensures the best cost-effectiveness for their application.

What strategy should the Generative AI Engineer use?

Options:

A.

Switch to using External Models instead

B.

Deploy the model using pay-per-token throughput as it comes with cost guarantees

C.

Change to a model with a fewer number of parameters in order to reduce hardware constraint issues

D.

Throttle the incoming batch of requests manually to avoid rate limiting issues

Page: 1 / 5
Total 45 questions