Google Professional Data Engineer Exam Questions and Answers
You need to compose visualization for operations teams with the following requirements:
Telemetry must include data from all 50,000 installations for the most recent 6 weeks (sampling once every minute)
The report must not be more than 3 hours delayed from live data.
The actionable report should only show suboptimal links.
Most suboptimal links should be sorted to the top.
Suboptimal links can be grouped and filtered by regional geography.
User response time to load the report must be <5 seconds.
You create a data source to store the last 6 weeks of data, and create visualizations that allow viewers to see multiple date ranges, distinct geographic regions, and unique installation types. You always show the latest data without any changes to your visualizations. You want to avoid creating and updating new visualizations each month. What should you do?
MJTelco needs you to create a schema in Google Bigtable that will allow for the historical analysis of the last 2 years of records. Each record that comes in is sent every 15 minutes, and contains a unique identifier of the device and a data record. The most common query is for all the data for a given device for a given day. Which schema should you use?
MJTelco is building a custom interface to share data. They have these requirements:
They need to do aggregations over their petabyte-scale datasets.
They need to scan specific time range rows with a very fast response time (milliseconds).
Which combination of Google Cloud Platform products should you recommend?
MJTelco’s Google Cloud Dataflow pipeline is now ready to start receiving data from the 50,000 installations. You want to allow Cloud Dataflow to scale its compute power up as required. Which Cloud Dataflow pipeline configuration setting should you update?
You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data.
Which two actions should you take? (Choose two.)
Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day’s events. They also want to use streaming ingestion. What should you do?
You need to compose visualizations for operations teams with the following requirements:
Which approach meets the requirements?
Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.
Which approach should you take?
Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?
Flowlogistic’s CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they’ve purchased a visualization tool to simplify the creation of BigQuery reports. However, they’ve been overwhelmed by all thedata in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?
Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?
You are collecting loT sensor data from millions of devices across the world and storing the data in BigQuery. Your access pattern is based on recent data tittered by location_id and device_version with the following query:
You want to optimize your queries for cost and performance. How should you structure your data?
You are creating a new pipeline in Google Cloud to stream IoT data from Cloud Pub/Sub through Cloud Dataflow to BigQuery. While previewing the data, you notice that roughly 2% of the data appears to be corrupt. You need to modify the Cloud Dataflow pipeline to filter out this corrupt data. What should you do?
You are designing storage for two relational tables that are part of a 10-TB database on Google Cloud. You want to support transactions that scale horizontally. You also want to optimize data for range queries on nonkey columns. What should you do?
You want to schedule a number of sequential load and transformation jobs Data files will be added to a Cloud Storage bucket by an upstream process There is no fixed schedule for when the new data arrives Next, a Dataproc job is triggered to perform some transformations and write the data to BigQuery. You then need to run additional transformation jobs in BigQuery The transformation jobs are different for every table These jobs might take hours to complete You need to determine the most efficient and maintainable workflow to process hundreds of tables and provide the freshest data to your end users. What should you do?
Your team is building a data lake platform on Google Cloud. As a part of the data foundation design, you are planning to store all the raw data in Cloud Storage You are expecting to ingest approximately 25 GB of data a day and your billing department is worried about the increasing cost of storing old data. The current business requirements are:
• The old data can be deleted anytime
• You plan to use the visualization layer for current and historical reporting
• The old data should be available instantly when accessed
• There should not be any charges for data retrieval.
What should you do to optimize for cost?
You store historic data in Cloud Storage. You need to perform analytics on the historic data. You want to use a solution to detect invalid data entries and perform data transformations that will not require programming or knowledge of SQL.
What should you do?
You work for a farming company. You have one BigQuery table named sensors, which is about 500 MB and contains the list of your 5000 sensors, with columns for id, name, and location. This table is updated every hour. Each sensor generates one metric every 30 seconds along with a timestamp. which you want to store in BigQuery. You want to run an analytical query on the data once a week for monitoring purposes. You also want to minimize costs. What data model should you use?
Your company currently runs a large on-premises cluster using Spark Hive and Hadoop Distributed File System (HDFS) in a colocation facility. The duster is designed to support peak usage on the system, however, many jobs are batch n nature, and usage of the cluster fluctuates quite dramatically.
Your company is eager to move to the cloud to reduce the overhead associated with on-premises infrastructure and maintenance and to benefit from the cost savings. They are also hoping to modernize their existing infrastructure to use more servers offerings m order to take advantage of the cloud Because of the tuning of their contract renewal with the colocation facility they have only 2 months for their initial migration How should you recommend they approach thee upcoming migration strategy so they can maximize their cost savings in the cloud will still executing the migration in time?
For the best possible performance, what is the recommended zone for your Compute Engine instance and Cloud Bigtable instance?
Which of the following are examples of hyperparameters? (Select 2 answers.)
The _________ for Cloud Bigtable makes it possible to use Cloud Bigtable in a Cloud Dataflow pipeline.
Which action can a Cloud Dataproc Viewer perform?
When you store data in Cloud Bigtable, what is the recommended minimum amount of stored data?
Which TensorFlow function can you use to configure a categorical column if you don't know all of the possible values for that column?
You have a job that you want to cancel. It is a streaming pipeline, and you want to ensure that any data that is in-flight is processed and written to the output. Which of the following commands can you use on the Dataflow monitoring console to stop the pipeline job?
Which is the preferred method to use to avoid hotspotting in time series data in Bigtable?
Which of the following statements about the Wide & Deep Learning model are true? (Select 2 answers.)
Scaling a Cloud Dataproc cluster typically involves ____.
All Google Cloud Bigtable client requests go through a front-end server ______ they are sent to a Cloud Bigtable node.
Which of the following is NOT true about Dataflow pipelines?
What is the general recommendation when designing your row keys for a Cloud Bigtable schema?
The Dataflow SDKs have been recently transitioned into which Apache service?
Which Cloud Dataflow / Beam feature should you use to aggregate data in an unbounded data source every hour based on the time when the data entered the pipeline?
When creating a new Cloud Dataproc cluster with the projects.regions.clusters.create operation, these four values are required: project, region, name, and ____.
When running a pipeline that has a BigQuery source, on your local machine, you continue to get permission denied errors. What could be the reason for that?
To run a TensorFlow training job on your own computer using Cloud Machine Learning Engine, what would your command start with?
What are two methods that can be used to denormalize tables in BigQuery?
You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:
The user profile: What the user likes and doesn’t like to eat
The user account information: Name, address, preferred meal times
The order information: When orders are made, from where, to whom
The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?
You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?
You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity ‘Movie’ the property ‘actors’ and the property ‘tags’ have multiple values but the property ‘date released’ does not. A typical query would ask for all movies with actor=
You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required.
You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)
Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.
You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)
You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?
Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?
You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?
Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?
Your company is migrating their 30-node Apache Hadoop cluster to the cloud. They want to re-use Hadoop jobs they have already created and minimize the management of the cluster as much as possible. They also want to be able to persist data beyond the life of the cluster. What should you do?
You want to use Google Stackdriver Logging to monitor Google BigQuery usage. You need an instant notification to be sent to your monitoring tool when new data is appended to a certain table using an insert job, but you do not want to receive notifications for other tables. What should you do?
Your company uses a proprietary system to send inventory data every 6 hours to a data ingestion service in the cloud. Transmitted data includes a payload of several fields and the timestamp of the transmission. If there are any concerns about a transmission, the system re-transmits the data. How should you deduplicate the data most efficiency?
Your company’s on-premises Apache Hadoop servers are approaching end-of-life, and IT has decided to migrate the cluster to Google Cloud Dataproc. A like-for-like migration of the cluster would require 50 TB of Google Persistent Disk per node. The CIO is concerned about the cost of using that much block storage. You want to minimize the storage cost of the migration. What should you do?
Your company is in a highly regulated industry. One of your requirements is to ensure individual users have access only to the minimum amount of information required to do their jobs. You want to enforce this requirement with Google BigQuery. Which three approaches can you take? (Choose three.)
You are building new real-time data warehouse for your company and will use Google BigQuery streaming inserts. There is no guarantee that data will only be sent in once but you do have a unique ID for each row of data and an event timestamp. You want to ensure that duplicates are not included while interactively querying data. Which query type should you use?
You are building a model to predict whether or not it will rain on a given day. You have thousands of input features and want to see if you can improve training speed by removing some features while having a minimum effect on model accuracy. What can you do?
You need to store and analyze social media postings in Google BigQuery at a rate of 10,000 messages per minute in near real-time. Initially, design the application to use streaming inserts for individual postings. Your application also performs data aggregations right after the streaming inserts. You discover that the queries after streaming inserts do not exhibit strong consistency, and reports from the queries might miss in-flight data. How can you adjust your application design?
You are designing a basket abandonment system for an ecommerce company. The system will send a message to a user based on these rules:
No interaction by the user on the site for 1 hour
Has added more than $30 worth of products to the basket
Has not completed a transaction
You use Google Cloud Dataflow to process the data and decide if a message should be sent. How should you design the pipeline?
Business owners at your company have given you a database of bank transactions. Each row contains the user ID, transaction type, transaction location, and transaction amount. They ask you to investigate what type of machine learning can be applied to the data. Which three machine learning applications can you use? (Choose three.)