Winter Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dumps65

Google Professional-Data-Engineer Dumps

Google Professional Data Engineer Exam Questions and Answers

Question 1

When a Cloud Bigtable node fails, ____ is lost.

Options:

A.

all data

B.

no data

C.

the last transaction

D.

the time dimension

Question 2

You want to use a BigQuery table as a data sink. In which writing mode(s) can you use BigQuery as a sink?

Options:

A.

Both batch and streaming

B.

BigQuery cannot be used as a sink

C.

Only batch

D.

Only streaming

Question 3

Which of these statements about BigQuery caching is true?

Options:

A.

By default, a query's results are not cached.

B.

BigQuery caches query results for 48 hours.

C.

Query results are cached even if you specify a destination table.

D.

There is no charge for a query that retrieves its results from cache.

Question 4

Scaling a Cloud Dataproc cluster typically involves ____.

Options:

A.

increasing or decreasing the number of worker nodes

B.

increasing or decreasing the number of master nodes

C.

moving memory to run more applications on a single node

D.

deleting applications from unused nodes periodically

Question 5

Which of these rules apply when you add preemptible workers to a Dataproc cluster (select 2 answers)?

Options:

A.

Preemptible workers cannot use persistent disk.

B.

Preemptible workers cannot store data.

C.

If a preemptible worker is reclaimed, then a replacement worker must be added manually.

D.

A Dataproc cluster cannot have only preemptible workers.

Question 6

The Dataflow SDKs have been recently transitioned into which Apache service?

Options:

A.

Apache Spark

B.

Apache Hadoop

C.

Apache Kafka

D.

Apache Beam

Question 7

Which of these statements about exporting data from BigQuery is false?

Options:

A.

To export more than 1 GB of data, you need to put a wildcard in the destination filename.

B.

The only supported export destination is Google Cloud Storage.

C.

Data can only be exported in JSON or Avro format.

D.

The only compression option available is GZIP.

Question 8

What are two of the characteristics of using online prediction rather than batch prediction?

Options:

A.

It is optimized to handle a high volume of data instances in a job and to run more complex models.

B.

Predictions are returned in the response message.

C.

Predictions are written to output files in a Cloud Storage location that you specify.

D.

It is optimized to minimize the latency of serving predictions.

Question 9

Which of these numbers are adjusted by a neural network as it learns from a training dataset (select 2 answers)?

Options:

A.

Weights

B.

Biases

C.

Continuous features

D.

Input values

Question 10

Which of the following is NOT one of the three main types of triggers that Dataflow supports?

Options:

A.

Trigger based on element size in bytes

B.

Trigger that is a combination of other triggers

C.

Trigger based on element count

D.

Trigger based on time

Question 11

Cloud Dataproc is a managed Apache Hadoop and Apache _____ service.

Options:

A.

Blaze

B.

Spark

C.

Fire

D.

Ignite

Question 12

All Google Cloud Bigtable client requests go through a front-end server ______ they are sent to a Cloud Bigtable node.

Options:

A.

before

B.

after

C.

only if

D.

once

Question 13

Cloud Bigtable is Google's ______ Big Data database service.

Options:

A.

Relational

B.

mySQL

C.

NoSQL

D.

SQL Server

Question 14

When creating a new Cloud Dataproc cluster with the projects.regions.clusters.create operation, these four values are required: project, region, name, and ____.

Options:

A.

zone

B.

node

C.

label

D.

type

Question 15

Which row keys are likely to cause a disproportionate number of reads and/or writes on a particular node in a Bigtable cluster (select 2 answers)?

Options:

A.

A sequential numeric ID

B.

A timestamp followed by a stock symbol

C.

A non-sequential numeric ID

D.

A stock symbol followed by a timestamp

Question 16

In order to securely transfer web traffic data from your computer's web browser to the Cloud Dataproc cluster you should use a(n) _____.

Options:

A.

VPN connection

B.

Special browser

C.

SSH tunnel

D.

FTP connection

Question 17

What are two of the benefits of using denormalized data structures in BigQuery?

Options:

A.

Reduces the amount of data processed, reduces the amount of storage required

B.

Increases query speed, makes queries simpler

C.

Reduces the amount of storage required, increases query speed

D.

Reduces the amount of data processed, increases query speed

Question 18

Which of these operations can you perform from the BigQuery Web UI?

Options:

A.

Upload a file in SQL format.

B.

Load data with nested and repeated fields.

C.

Upload a 20 MB file.

D.

Upload multiple files using a wildcard.

Question 19

Which of the following statements about the Wide & Deep Learning model are true? (Select 2 answers.)

Options:

A.

The wide model is used for memorization, while the deep model is used for generalization.

B.

A good use for the wide and deep model is a recommender system.

C.

The wide model is used for generalization, while the deep model is used for memorization.

D.

A good use for the wide and deep model is a small-scale linear regression problem.

Question 20

Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.

Which approach should you take?

Options:

A.

Attach the timestamp on each message in the Cloud Pub/Sub subscriber application as they are received.

B.

Attach the timestamp and Package ID on the outbound message from each publisher device as they are sent to Clod Pub/Sub.

C.

Use the NOW () function in BigQuery to record the event’s time.

D.

Use the automatically generated timestamp from Cloud Pub/Sub to order the data.

Question 21

Flowlogistic’s CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they’ve purchased a visualization tool to simplify the creation of BigQuery reports. However, they’ve been overwhelmed by all the data in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?

Options:

A.

Export the data into a Google Sheet for virtualization.

B.

Create an additional table with only the necessary columns.

C.

Create a view on the table to present to the virtualization tool.

D.

Create identity and access management (IAM) roles on the appropriate columns, so only they appear in a query.

Question 22

Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?

Options:

A.

Store the common data in BigQuery as partitioned tables.

B.

Store the common data in BigQuery and expose authorized views.

C.

Store the common data encoded as Avro in Google Cloud Storage.

D.

Store he common data in the HDFS storage for a Google Cloud Dataproc cluster.

Question 23

Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?

Options:

A.

Cloud Pub/Sub, Cloud Dataflow, and Cloud Storage

B.

Cloud Pub/Sub, Cloud Dataflow, and Local SSD

C.

Cloud Pub/Sub, Cloud SQL, and Cloud Storage

D.

Cloud Load Balancing, Cloud Dataflow, and Cloud Storage

Question 24

Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?

Options:

A.

Rewrite the job in Pig.

B.

Rewrite the job in Apache Spark.

C.

Increase the size of the Hadoop cluster.

D.

Decrease the size of the Hadoop cluster but also rewrite the job in Hive.

Question 25

Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.

You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)

Options:

A.

Introduce data compression for each file to increase the rate file of file transfer.

B.

Contact your internet service provider (ISP) to increase your maximum bandwidth to at least 100 Mbps.

C.

Redesign the data ingestion process to use gsutil tool to send the CSV files to a storage bucket in parallel.

D.

Assemble 1,000 files into a tape archive (TAR) file. Transmit the TAR files instead, and disassemble the CSV files in the cloud upon receiving them.

E.

Create an S3-compatible storage endpoint in your network, and use Google Cloud Storage Transfer Service to transfer on-premices data to the designated storage bucket.

Question 26

You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required.

You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)

Options:

A.

Redis

B.

HBase

C.

MySQL

D.

MongoDB

E.

Cassandra

F.

HDFS with Hive

Question 27

Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?

Options:

A.

The CSV data loaded in BigQuery is not flagged as CSV.

B.

The CSV data has invalid rows that were skipped on import.

C.

The CSV data loaded in BigQuery is not using BigQuery’s default encoding.

D.

The CSV data has not gone through an ETL phase before loading into BigQuery.

Question 28

You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:

    The user profile: What the user likes and doesn’t like to eat

    The user account information: Name, address, preferred meal times

    The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

Options:

A.

BigQuery

B.

Cloud SQL

C.

Cloud Bigtable

D.

Cloud Datastore

Question 29

You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?

Options:

A.

Create a view in BigQuery that concatenates the FirstName and LastName field values to produce the FullName.

B.

Add a new column called FullName to the Users table. Run an UPDATE statement that updates the FullName column for each user with the concatenation of the FirstName and LastName values.

C.

Create a Google Cloud Dataflow job that queries BigQuery for the entire Users table, concatenates the FirstName value and LastName value for each user, and loads the proper values for FirstName, LastName, and FullName into a new table in BigQuery.

D.

Use BigQuery to export the data for the table to a CSV file. Create a Google Cloud Dataproc job to process the CSV file and output a new CSV file containing the proper values for FirstName, LastName and FullName. Run a BigQuery load job to load the new CSV file into BigQuery.

Question 30

You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?

Options:

A.

Change the processing job to use Google Cloud Dataproc instead.

B.

Manually start the Cloud Dataflow job each morning when you get into the office.

C.

Create a cron job with Google App Engine Cron Service to run the Cloud Dataflow job.

D.

Configure the Cloud Dataflow job as a streaming job so that it processes the log data immediately.

Question 31

You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?

Options:

A.

Load the data every 30 minutes into a new partitioned table in BigQuery.

B.

Store and update the data in a regional Google Cloud Storage bucket and create a federated data source in BigQuery

C.

Store the data in Google Cloud Datastore. Use Google Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Cloud Datastore

D.

Store the data in a file in a regional Google Cloud Storage bucket. Use Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Google Cloud Storage.

Question 32

You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity ‘Movie’ the property ‘actors’ and the property ‘tags’ have multiple values but the property ‘date released’ does not. A typical query would ask for all movies with actor= ordered by date_released or all movies with tag=Comedy ordered by date_released. How should you avoid a combinatorial explosion in the number of indexes?

as

as

Options:

A.

Option A

B.

Option B.

C.

Option C

D.

Option D

Question 33

You are designing a messaging system by using Pub/Sub to process clickstream data with an event-driven consumer app that relies on a push subscription. You need to configure the messaging system that is reliable enough to handle temporary downtime of the consumer app. You also need the messaging system to store the input messages that cannot be consumed by the subscriber. The system needs to retry failed messages gradually, avoiding overloading the consumer app, and store the failed messages after a maximum of 10 retries in a topic. How should you configure the Pub/Sub subscription?

Options:

A.

Increase the acknowledgement deadline to 10 minutes.

B.

Use immediate redelivery as the subscription retry policy, and configure dead lettering to a different topic with maximum delivery attempts set to 10.

C.

Use exponential backoff as the subscription retry policy, and configure dead lettering to the same source topic with maximum delivery attempts set to 10.

D.

Use exponential backoff as the subscription retry policy, and configure dead lettering to a different topic with maximum delivery attempts set to 10.

Question 34

You are troubleshooting your Dataflow pipeline that processes data from Cloud Storage to BigQuery. You have discovered that the Dataflow worker nodes cannot communicate with one another Your networking team relies on Google Cloud network tags to define firewall rules You need to identify the issue while following Google-recommended networking security practices. What should you do?

Options:

A.

Determine whether your Dataflow pipeline has a custom network tag set.

B.

Determine whether there is a firewall rule set to allow traffic on TCP ports 12345 and 12346 for the Dataflow network tag.

C.

Determine whether your Dataflow pipeline is deployed with the external IP address option enabled.

D.

Determine whether there is a firewall rule set to allow traffic on TCP ports 12345 and 12346 on the subnet used by Dataflow workers.

Question 35

You have 100 GB of data stored in a BigQuery table. This data is outdated and will only be accessed one or two times a year for analytics with SQL. For backup purposes, you want to store this data to be immutable for 3 years. You want to minimize storage costs. What should you do?

Options:

A.

1 Create a BigQuery table clone.

2. Query the clone when you need to perform analytics.

B.

1 Create a BigQuery table snapshot.

2 Restore the snapshot when you need to perform analytics.

C.

1. Perform a BigQuery export to a Cloud Storage bucket with archive storage class.

2 Enable versionmg on the bucket.

3. Create a BigQuery external table on the exported files.

D.

1 Perform a BigQuery export to a Cloud Storage bucket with archive storage class.

2 Set a locked retention policy on the bucket.

3. Create a BigQuery external table on the exported files.

Question 36

Your globally distributed auction application allows users to bid on items. Occasionally, users place identical bids at nearly identical times, and different application servers process those bids. Each bid event contains the item, amount, user, and timestamp. You want to collate those bid events into a single location in real time to determine which user bid first. What should you do?

Options:

A.

Create a file on a shared file and have the application servers write all bid events to that file. Process the file with Apache Hadoop to identify which user bid first.

B.

Have each application server write the bid events to Cloud Pub/Sub as they occur. Push the events from Cloud Pub/Sub to a custom endpoint that writes the bid event information into Cloud SQL.

C.

Set up a MySQL database for each application server to write bid events into. Periodically query each of those distributed MySQL databases and update a master MySQL database with bid event information.

D.

Have each application server write the bid events to Google Cloud Pub/Sub as they occur. Use a pull

subscription to pull the bid events using Google Cloud Dataflow. Give the bid for each item to the user in

the bid event that is processed first.

Question 37

You are migrating your on-premises data warehouse to BigQuery. One of the upstream data sources resides on a MySQL database that runs in your on-premises data center with no public IP addresses. You want to ensure that the data ingestion into BigQuery is done securely and does not go through the public internet. What should you do?

Options:

A.

Update your existing on-premises ETL tool to write to BigQuery by using the BigQuery Open Database Connectivity (ODBC) driver. Set up the proxy parameter in the Simba. googlebigqueryodbc. ini tile to point to your data center's NAT gateway.

B.

Use Datastream to replicate data from your on-premises MySQL database to BigQuery. Gather Datastream public IP addresses of the Google Cloud region that will be used to set up the stream. Add those IP addresses to the firewall allowlist of your on-premises data center.

Use IP Allovlisting as the connectivity method and Server-only as the encryption type when setting up the connection profile in Datastream.

C.

Use Datastream to replicate data from your on-premises MySQL database to BigQuery. Use Forward-SSH tunnel as the connectivity method to establish a secure tunnel between Datastream and your on-premises MySQL database through a tunnel server in your on-premises data center. Use None as the encryption type when setting up the connection profile in Datastream.

D.

Use Datastream to replicate data from your on-premises MySQL database to BigQuery. Set up Cloud Interconnect between your on- premises data center and Google Cloud. Use Private connectivity as the connectivity method and allocate an IP address range within your VPC network to the Datastream connectivity configuration. Use Server-only as the encryption type when setting up the connection profile in Datastream.

Question 38

Your car factory is pushing machine measurements as messages into a Pub/Sub topic in your Google Cloud project. A Dataflow streaming job. that you wrote with the Apache Beam SDK, reads these messages, sends acknowledgment lo Pub/Sub. applies some custom business logic in a Doffs instance, and writes the result to BigQuery. You want to ensure that if your business logic fails on a message, the message will be sent to a Pub/Sub topic that you want to monitor for alerting purposes. What should you do?

Options:

A.

Use an exception handling block in your Data Flow’s Doffs code to push the messages that failed to be transformed through a side output

and to a new Pub/Sub topic. Use Cloud Monitoring to monitor the topic/num_jnacked_messages_by_region metric on this new topic.

B.

Enable retaining of acknowledged messages in your Pub/Sub pull subscription. Use Cloud Monitoring to monitor the

subscription/num_retained_acked_messages metric on this subscription.

C.

Enable dead lettering in your Pub/Sub pull subscription, and specify a new Pub/Sub topic as the dead letter topic. Use Cloud Monitoring to

monitor the subscription/dead_letter_message_count metric on your pull subscription.

D.

Create a snapshot of your Pub/Sub pull subscription. Use Cloud Monitoring to monitor the snapshot/numessages metric on this

snapshot.

Question 39

Your company has hired a new data scientist who wants to perform complicated analyses across very large datasets stored in Google Cloud Storage and in a Cassandra cluster on Google Compute Engine. The scientist primarily wants to create labelled data sets for machine learning projects, along with some visualization tasks. She reports that her laptop is not powerful enough to perform her tasks and it is slowing her down. You want to help her perform her tasks. What should you do?

Options:

A.

Run a local version of Jupiter on the laptop.

B.

Grant the user access to Google Cloud Shell.

C.

Host a visualization tool on a VM on Google Compute Engine.

D.

Deploy Google Cloud Datalab to a virtual machine (VM) on Google Compute Engine.

Question 40

You create an important report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. You notice that visualizations are not showing data that is less than 1 hour old. What should you do?

Options:

A.

Disable caching by editing the report settings.

B.

Disable caching in BigQuery by editing table details.

C.

Refresh your browser tab showing the visualizations.

D.

Clear your browser history for the past hour then reload the tab showing the virtualizations.

Question 41

Your company is streaming real-time sensor data from their factory floor into Bigtable and they have noticed extremely poor performance. How should the row key be redesigned to improve Bigtable performance on queries that populate real-time dashboards?

Options:

A.

Use a row key of the form .

B.

Use a row key of the form .

C.

Use a row key of the form #.

D.

Use a row key of the form >##.

Question 42

You designed a database for patient records as a pilot project to cover a few hundred patients in three clinics. Your design used a single database table to represent all patients and their visits, and you used self-joins to generate reports. The server resource utilization was at 50%. Since then, the scope of the project has expanded. The database must now store 100 times more patient records. You can no longer run the reports, because they either take too long or they encounter errors with insufficient compute resources. How should you adjust the database design?

Options:

A.

Add capacity (memory and disk space) to the database server by the order of 200.

B.

Shard the tables into smaller ones based on date ranges, and only generate reports with prespecified date ranges.

C.

Normalize the master patient-record table into the patient table and the visits table, and create other necessary tables to avoid self-join.

D.

Partition the table into smaller tables, with one for each clinic. Run queries against the smaller table pairs, and use unions for consolidated reports.

Question 43

You are building new real-time data warehouse for your company and will use Google BigQuery streaming inserts. There is no guarantee that data will only be sent in once but you do have a unique ID for each row of data and an event timestamp. You want to ensure that duplicates are not included while interactively querying data. Which query type should you use?

Options:

A.

Include ORDER BY DESK on timestamp column and LIMIT to 1.

B.

Use GROUP BY on the unique ID column and timestamp column and SUM on the values.

C.

Use the LAG window function with PARTITION by unique ID along with WHERE LAG IS NOT NULL.

D.

Use the ROW_NUMBER window function with PARTITION by unique ID along with WHERE row equals 1.

Question 44

Your software uses a simple JSON format for all messages. These messages are published to Google Cloud Pub/Sub, then processed with Google Cloud Dataflow to create a real-time dashboard for the CFO. During testing, you notice that some messages are missing in the dashboard. You check the logs, and all messages are being published to Cloud Pub/Sub successfully. What should you do next?

Options:

A.

Check the dashboard application to see if it is not displaying correctly.

B.

Run a fixed dataset through the Cloud Dataflow pipeline and analyze the output.

C.

Use Google Stackdriver Monitoring on Cloud Pub/Sub to find the missing messages.

D.

Switch Cloud Dataflow to pull messages from Cloud Pub/Sub instead of Cloud Pub/Sub pushing messages to Cloud Dataflow.

Question 45

You want to process payment transactions in a point-of-sale application that will run on Google Cloud Platform. Your user base could grow exponentially, but you do not want to manage infrastructure scaling.

Which Google database service should you use?

Options:

A.

Cloud SQL

B.

BigQuery

C.

Cloud Bigtable

D.

Cloud Datastore

Question 46

You want to use a database of information about tissue samples to classify future tissue samples as either normal or mutated. You are evaluating an unsupervised anomaly detection method for classifying the tissue samples. Which two characteristic support this method? (Choose two.)

Options:

A.

There are very few occurrences of mutations relative to normal samples.

B.

There are roughly equal occurrences of both normal and mutated samples in the database.

C.

You expect future mutations to have different features from the mutated samples in the database.

D.

You expect future mutations to have similar features to the mutated samples in the database.

E.

You already have labels for which samples are mutated and which are normal in the database.

Question 47

Business owners at your company have given you a database of bank transactions. Each row contains the user ID, transaction type, transaction location, and transaction amount. They ask you to investigate what type of machine learning can be applied to the data. Which three machine learning applications can you use? (Choose three.)

Options:

A.

Supervised learning to determine which transactions are most likely to be fraudulent.

B.

Unsupervised learning to determine which transactions are most likely to be fraudulent.

C.

Clustering to divide the transactions into N categories based on feature similarity.

D.

Supervised learning to predict the location of a transaction.

E.

Reinforcement learning to predict the location of a transaction.

F.

Unsupervised learning to predict the location of a transaction.

Question 48

Your company’s customer and order databases are often under heavy load. This makes performing analytics against them difficult without harming operations. The databases are in a MySQL cluster, with nightly backups taken using mysqldump. You want to perform analytics with minimal impact on operations. What should you do?

Options:

A.

Add a node to the MySQL cluster and build an OLAP cube there.

B.

Use an ETL tool to load the data from MySQL into Google BigQuery.

C.

Connect an on-premises Apache Hadoop cluster to MySQL and perform ETL.

D.

Mount the backups to Google Cloud SQL, and then process the data using Google Cloud Dataproc.

Question 49

You are deploying 10,000 new Internet of Things devices to collect temperature data in your warehouses globally. You need to process, store and analyze these very large datasets in real time. What should you do?

Options:

A.

Send the data to Google Cloud Datastore and then export to BigQuery.

B.

Send the data to Google Cloud Pub/Sub, stream Cloud Pub/Sub to Google Cloud Dataflow, and store the data in Google BigQuery.

C.

Send the data to Cloud Storage and then spin up an Apache Hadoop cluster as needed in Google Cloud Dataproc whenever analysis is required.

D.

Export logs in batch to Google Cloud Storage and then spin up a Google Cloud SQL instance, import the data from Cloud Storage, and run an analysis as needed.

Question 50

Your company is performing data preprocessing for a learning algorithm in Google Cloud Dataflow. Numerous data logs are being are being generated during this step, and the team wants to analyze them. Due to the dynamic nature of the campaign, the data is growing exponentially every hour.

The data scientists have written the following code to read the data for a new key features in the logs.

BigQueryIO.Read

.named(“ReadLogData”)

.from(“clouddataflow-readonly:samples.log_data”)

You want to improve the performance of this data read. What should you do?

Options:

A.

Specify the TableReference object in the code.

B.

Use .fromQuery operation to read specific fields from the table.

C.

Use of both the Google BigQuery TableSchema and TableFieldSchema classes.

D.

Call a transform that returns TableRow objects, where each element in the PCollexction represents a single row in the table.

Question 51

You are building a model to make clothing recommendations. You know a user’s fashion preference is likely to change over time, so you build a data pipeline to stream new data back to the model as it becomes available. How should you use this data to train the model?

Options:

A.

Continuously retrain the model on just the new data.

B.

Continuously retrain the model on a combination of existing data and the new data.

C.

Train on the existing data while using the new data as your test set.

D.

Train on the new data while using the existing data as your test set.

Question 52

Your company uses a proprietary system to send inventory data every 6 hours to a data ingestion service in the cloud. Transmitted data includes a payload of several fields and the timestamp of the transmission. If there are any concerns about a transmission, the system re-transmits the data. How should you deduplicate the data most efficiency?

Options:

A.

Assign global unique identifiers (GUID) to each data entry.

B.

Compute the hash value of each data entry, and compare it with all historical data.

C.

Store each data entry as the primary key in a separate database and apply an index.

D.

Maintain a database table to store the hash value and other metadata for each data entry.

Question 53

An external customer provides you with a daily dump of data from their database. The data flows into Google Cloud Storage GCS as comma-separated values (CSV) files. You want to analyze this data in Google BigQuery, but the data could have rows that are formatted incorrectly or corrupted. How should you build this pipeline?

Options:

A.

Use federated data sources, and check data in the SQL query.

B.

Enable BigQuery monitoring in Google Stackdriver and create an alert.

C.

Import the data into BigQuery using the gcloud CLI and set max_bad_records to 0.

D.

Run a Google Cloud Dataflow batch pipeline to import the data into BigQuery, and push errors to another dead-letter table for analysis.

Question 54

You want to use Google Stackdriver Logging to monitor Google BigQuery usage. You need an instant notification to be sent to your monitoring tool when new data is appended to a certain table using an insert job, but you do not want to receive notifications for other tables. What should you do?

Options:

A.

Make a call to the Stackdriver API to list all logs, and apply an advanced filter.

B.

In the Stackdriver logging admin interface, and enable a log sink export to BigQuery.

C.

In the Stackdriver logging admin interface, enable a log sink export to Google Cloud Pub/Sub, and subscribe to the topic from your monitoring tool.

D.

Using the Stackdriver API, create a project sink with advanced log filter to export to Pub/Sub, and subscribe to the topic from your monitoring tool.

Question 55

You are building a model to predict whether or not it will rain on a given day. You have thousands of input features and want to see if you can improve training speed by removing some features while having a minimum effect on model accuracy. What can you do?

Options:

A.

Eliminate features that are highly correlated to the output labels.

B.

Combine highly co-dependent features into one representative feature.

C.

Instead of feeding in each feature individually, average their values in batches of 3.

D.

Remove the features that have null values for more than 50% of the training records.

Question 56

Your company built a TensorFlow neural-network model with a large number of neurons and layers. The model fits well for the training data. However, when tested against new data, it performs poorly. What method can you employ to address this?

Options:

A.

Threading

B.

Serialization

C.

Dropout Methods

D.

Dimensionality Reduction

Question 57

You are designing a basket abandonment system for an ecommerce company. The system will send a message to a user based on these rules:

    No interaction by the user on the site for 1 hour

    Has added more than $30 worth of products to the basket

    Has not completed a transaction

You use Google Cloud Dataflow to process the data and decide if a message should be sent. How should you design the pipeline?

Options:

A.

Use a fixed-time window with a duration of 60 minutes.

B.

Use a sliding time window with a duration of 60 minutes.

C.

Use a session window with a gap time duration of 60 minutes.

D.

Use a global window with a time based trigger with a delay of 60 minutes.

Question 58

Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day’s events. They also want to use streaming ingestion. What should you do?

Options:

A.

Create a table called tracking_table and include a DATE column.

B.

Create a partitioned table called tracking_table and include a TIMESTAMP column.

C.

Create sharded tables for each day following the pattern tracking_table_YYYYMMDD.

D.

Create a table called tracking_table with a TIMESTAMP column to represent the day.

Question 59

You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data.

Which two actions should you take? (Choose two.)

Options:

A.

Ensure all the tables are included in global dataset.

B.

Ensure each table is included in a dataset for a region.

C.

Adjust the settings for each table to allow a related region-based security group view access.

D.

Adjust the settings for each view to allow a related region-based security group view access.

E.

Adjust the settings for each dataset to allow a related region-based security group view access.

Question 60

MJTelco needs you to create a schema in Google Bigtable that will allow for the historical analysis of the last 2 years of records. Each record that comes in is sent every 15 minutes, and contains a unique identifier of the device and a data record. The most common query is for all the data for a given device for a given day. Which schema should you use?

Options:

A.

Rowkey: date#device_idColumn data: data_point

B.

Rowkey: dateColumn data: device_id, data_point

C.

Rowkey: device_idColumn data: date, data_point

D.

Rowkey: data_pointColumn data: device_id, date

E.

Rowkey: date#data_pointColumn data: device_id

Question 61

You need to compose visualization for operations teams with the following requirements:

    Telemetry must include data from all 50,000 installations for the most recent 6 weeks (sampling once every minute)

    The report must not be more than 3 hours delayed from live data.

    The actionable report should only show suboptimal links.

    Most suboptimal links should be sorted to the top.

    Suboptimal links can be grouped and filtered by regional geography.

    User response time to load the report must be <5 seconds.

You create a data source to store the last 6 weeks of data, and create visualizations that allow viewers to see multiple date ranges, distinct geographic regions, and unique installation types. You always show the latest data without any changes to your visualizations. You want to avoid creating and updating new visualizations each month. What should you do?

Options:

A.

Look through the current data and compose a series of charts and tables, one for each possible

combination of criteria.

B.

Look through the current data and compose a small set of generalized charts and tables bound to criteria filters that allow value selection.

C.

Export the data to a spreadsheet, compose a series of charts and tables, one for each possible

combination of criteria, and spread them across multiple tabs.

D.

Load the data into relational database tables, write a Google App Engine application that queries all rows, summarizes the data across each criteria, and then renders results using the Google Charts and visualization API.

Question 62

You need to compose visualizations for operations teams with the following requirements:

Which approach meets the requirements?

Options:

A.

Load the data into Google Sheets, use formulas to calculate a metric, and use filters/sorting to show only suboptimal links in a table.

B.

Load the data into Google BigQuery tables, write Google Apps Script that queries the data, calculates the metric, and shows only suboptimal rows in a table in Google Sheets.

C.

Load the data into Google Cloud Datastore tables, write a Google App Engine Application that queries all rows, applies a function to derive the metric, and then renders results in a table using the Google charts and visualization API.

D.

Load the data into Google BigQuery tables, write a Google Data Studio 360 report that connects to your data, calculates a metric, and then uses a filter expression to show only suboptimal rows in a table.

Question 63

MJTelco is building a custom interface to share data. They have these requirements:

    They need to do aggregations over their petabyte-scale datasets.

    They need to scan specific time range rows with a very fast response time (milliseconds).

Which combination of Google Cloud Platform products should you recommend?

Options:

A.

Cloud Datastore and Cloud Bigtable

B.

Cloud Bigtable and Cloud SQL

C.

BigQuery and Cloud Bigtable

D.

BigQuery and Cloud Storage

Question 64

MJTelco’s Google Cloud Dataflow pipeline is now ready to start receiving data from the 50,000 installations. You want to allow Cloud Dataflow to scale its compute power up as required. Which Cloud Dataflow pipeline configuration setting should you update?

Options:

A.

The zone

B.

The number of workers

C.

The disk size per worker

D.

The maximum number of workers

Page: 1 / 37
Total 372 questions